

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

Bremsstrahlung Radiation

- When high energy beta radiation is absorbed in material, electromagnetic radiation known as 'Bremsstrahlung' radiation can be produced.
- Bremsstrahlung means 'braking' radiation
- Bremsstrahlung radiation is more penetrating than the original beta radiation.
- In high-Z metals, such as lead, the production of Bremsstrahlung radiation becomes more significant. Accordingly, beta particles are shielded with low-Z, non-metals, such as Plexiglas.

Health Physics

September 14

September 14

Summary of Effects			
•Stochastic Effects	Deterministic Effects		
 no threshold (statistical probability) possibility of stochastic effect with any dose – probability increases with dose severity of effect is not related to dose received 	 •threshold •no effect will be seen for doses below threshold •above threshold severity of effect depends on dose •effect is seen due to death of cells → enough cells to affect/impair this function of a tissue or organ 		
•cancer •genetic effects	 •radiation burns •blood effects •cataracts (lens of eye) •Acute Radiation Syndromes 		
September 14 McMaster University Hea	Ith Physics OH 4646		

Risk in Perspective

Cause	Days	Days Cause			Days
Living in poverty	3500	3500 Dangerous job-accidents			300
Being unmarried-male	3500	00 Motor vehicle accidents			207
Being unmarried-female	1600	00 Accidents in home			95
Smoking-male	2250	2250 Average job-accidents			74
Smoking-female	800	800 Alcohol-average			130
Being 30% overweight	1300	0 Legal drug misuse			95
Being 20% overweight	900	Rad	Radon in homes		35
Cancer	980	Rad	iation-1 mSv per year		10
Diabetes	95	Coff	ee		6
Drowning	41	Smo	ke alarm in home		-10
Individual Action	Minutes o	of Life Lost	Individual Action	Minutes of	Life Los
Smoking a cigarette	10		Coast to coast drive	1000	
Crossing a street	0.4		Coast to coast flight	100	
Driving	0.4/Mile		0.1 mSv radiation	40	
Not using a seat belt	0.1/Mile				
eptember 14	McMaster University	lealth Physics	1	0	H 50 5

Nuclear Energy Worker Designation

- At McMaster University, anyone working with nuclear materials is designated as a Nuclear Energy Worker (NEW).
- Authorized workers are individuals who have completed Authorized Radioisotope Users Training and have been classified as Nuclear Energy Workers (NEWs).
- The most important aspect of being designated as an NEW is that there is a different set of dose limits for nuclear energy workers.

Health Physics

September 14

Emergency Dose Limits For Workers				
OBJECTIVE	EMERGENCY DOSE LIMIT	COMMENT		
Urgent actions to prevent capital equipment loss or damage	50 mSv (5 rem)	Applies to any McMaster University employee and volunteers from outside agencies.		
Urgent actions which will prevent or mitigate a serious radiological incident	250 mSv (25 rem)	Applies to any Nuclear Energy Worker and volunteers who are non-NEWs.		
Rescue and Lifesaving	1 Sv (100 rem)	Any volunteer who has been briefed on potential consequences of exposure.		
Radiation Protection Regulations: •During the control of an emergency and the consequent immediate and urgent remedial work, the effective dose and the equivalent dose may exceed the applicable dose limits prescribed by sections 13 and 14, but the effective dose shall not exceed 500 mSv and the equivalent dose received by the skin shall not exceed 5 000 mSv. •Does not apply in respect of pregnant NEWs •May be exceeded by a person acting voluntarily to save or protect human life McWaser				
September 14 University	Health Physics	56		

	Area	Radiation Surveyor	Health Physicist	Senior Health Physicist / RSO
	Health Sciences Centre HHS Nuclear Medicine Life Sciences Building MOSCL Building GSB Lucid Waste CAB GSB JHE Psychology	Mahendra Joshi (23687)	Diana I (23)	
	Thrombosis and Atherosclerosis Research Institute	Mahendra Joshi (23687) (Bev Leslie)	Moscu 165)	g
	X-Ray Facilities	Mike Giuliano (24394)]	we Tu
	Nuclear Research Building HLLF	Glenn McClung (26885)		cker (240
	McMaster University Cyclotron Facility and CPDC Cyclotron	Mike Giuliano (24394)	1	3
	McMaster Nuclear Reactor	Duane Lambert (27952) Mike Giuliano (24394)		
	McMaster Accelerator Lab	Mike Giuliano (24394)	94	
	Taylor Radiobiology Source Facility	Mike Giuliano (24394)	s Malco (27744	
	Health Physics Annex	Duane Lambert (27952)) mson	
	Instrumentation	Mike Giuliano (24394)		
	Services and Information Training Bookings Terri Parker (2422 Dosimetry Terri Parker (2422 Calibrations Mike Giuliano (2	6) Counting Service 6) Sample Shipmen 4394)	s Glenn McC ts Glenn McC	lung (27952) lung (27952)
ber 14	University H	ealth Physics		

Liquid Contamination

- Liquid contamination is nuclear material found out of containment, deposited on a surface, and in liquid form.
- Often, this contamination results from a spill, and may also be easily spread like loose contamination.
- It should be cleaned up according to procedures as soon as practical.

McMaster

September 14

- This contamination arises from nuclear materials deposited on the skin or clothes of personnel.
- The increased risk of this contamination is the close contact to the nuclear material.
- Skin contamination may diffuse through the skin and become a more harmful internal hazard.
- All instances of personnel contamination must be reported to Health Physics.

```
September 14
```

75

Internal Personnel Contamination

- This contamination arises from nuclear materials following one of the four main pathways into the body.
- Generally, there is an increased risk of an isotope being an internal hazard, rather than an external hazard.
- There is not usually an easy method of removing the isotope.
- The isotope is eliminated biologically or by radioactive decay.

September 14

74

Units of Contamination			
Type of Contamination	Unit	Limiting Value	
Internal Contamination	Becquerel (Bq)	Annual Limit on Intake (ALI)	
Surface Contamination	Bq/cm ²	Derived Working Limit (DWL)	
Airborne Contamination	Bq/m ³	Derived Air Concentration (DAC)	
September 14	Master Versity Health Physics	77	

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Protective Equipment

- For work with open nuclear materials, personal protective equipment offers a barrier between the worker and the radioactive substances.
- Requirements for use of certain equipment will be established by Health Physics for routine tasks and determined for unique situations in the work planning phase of the task.
 - Gloves
 - Lab Coats
 - Shoe Covers (aka Booties)
 - Coveralls

September 14

Respirators and Air Supplied Hoods

McMaster University Health Physics

82

September 14

Contacting Health Physics

- For more information, training and Health Physics assistance please contact our department at Extension 24226
- You may contact individual members of the Department using the contact sheet shown

McMaster University Health Physics

September 14

